2,117 research outputs found

    Analysis of Neuronal and Microglial Responses to Implanted Silicon Devices through Immunohistochemistry and CLARITY

    Get PDF
    Brain computer interfaces (BCI’s) and implantable cortical devices have recently emerged in research as promising treatment methods for a variety of neurological problems such as motor dysfunction, memory loss, and sudden onset seizures. The number of people currently suffering from a loss of nervous system function as a result of neurodegenerative diseases or injury creates a need for reliable neural prostheses. The autoimmune response of the Central Nervous System (CNS) when introduced with a foreign object such as an electrode shank quickly impedes signal strength and degrades the functional life of the device. Two different experimental methods were used to analyze the host tissue responses to implantation with silicon micro-electrodes and micro-wires. In situ device capture histology was used to obtain fluorescent images of neurons and activated microglia in rat and mouse brain slices with an electrode still present. A recent method, CLARITY, was used to obtain images of green fluorescent microglia in un-sectioned mouse brains post mortem. Both methods utilized a laser-equipped inverted confocal microscope to obtain the images. The results show that increasing tissue transparency with CLARITY and two photon imaging can give detailed information about the tissue immune response in an implanted brain. Through comparison to various controls, changes in density, movement, and conformation of neurons and microglia surrounding electrode implants will help increase the understanding of the cellular mechanisms involved and likely be used to identify future targets for research

    Quantification of LPS Eluate from Coated Microelectrode Devices

    Get PDF
    Penetrating microelectrode arrays have a great potential to be used as control and communication interfaces for neuroprosthetics. A persistent obstacle in the clinical implementation of microelectrode arrays is the chronic degradation of these devices, putatively due to the foreign body response. Though researchers have studied the progression of the foreign body response and the effect of anti-inflammatory drugs on the efficacy of the implant, the exact biological mechanisms of implant degradation are not fully understood. To more closely investigate the effect of the foreign body response on device degradation, neuroinflammation can be exacerbated by coating dummy electrodes implanted into mice brains with lipopolysaccharide (LPS) – a cell wall component of bacteria which induces inflammation. Quantifying the amount of LPS released from a coated electrode is crucial in performing such an experiment. Using a Limulus amebocyte lysate (LAL) test – a test based on the extract of the blood from horseshoe crab which reacts with LPS – the concentration of LPS can be accurately quantified, allowing for a more careful characterization of the inflammatory response. In particular, the devices coated in 1 mg/ml concentration of LPS eluted a mean mass of 4.55 EU with a standard deviation of .51, where 1 endotoxin unit (EU) ≈ 1 ng. A linear regression of the standard concentrations resulted in an r2 of .9806, indicating a reliable model for calculating the concentration of LPS present in a sample. These results suggest that LPS elution can be accurately and precisely measured using the LAL assay

    Central nervous system microstimulation: Towards selective micro-neuromodulation

    Get PDF
    Electrical stimulation technologies capable of modulating neural activity are well established for neuroscientific research and neurotherapeutics. Recent micro-neuromodulation experimental results continue to explain neural processing complexity and suggest the potential for assistive technologies capable of restoring or repairing of basic function. Nonetheless, performance is dependent upon the specificity of the stimulation. Increasingly specific stimulation is hypothesized to be achieved by progressively smaller interfaces. Miniaturization is a current focus of neural implants due to improvements in mitigation of the body's foreign body response. It is likely that these exciting technologies will offer the promise to provide large-scale micro-neuromodulation in the future. Here, we highlight recent successes of assistive technologies through bidirectional neuroprostheses currently being used to repair or restore basic brain functionality. Furthermore, we introduce recent neuromodulation technologies that might improve the effectiveness of these neuroprosthetic interfaces by increasing their chronic stability and microstimulation specificity. We suggest a vision where the natural progression of innovative technologies and scientific knowledge enables the ability to selectively micro-neuromodulate every neuron in the brain

    Thin-Film Sol-Gel as Controlled Delivery Platform for Neural Microelectrodes

    Get PDF
    Long-term efficacy of neural implantation devices is a persisting challenge in neural engineering and rehabilitation. Upon implantation of a neural device, the foreign body response (FBR) is triggered and glial cells form a sheath around the electrode array. This sheath isolates the array from the rest of the brain both mechanically and electrically. Tetramethyl orthosilicate (TMOS), a thin-film polymer, has been shown to not negatively impact the impedance and charge-carrying capacity, as well as offer a controlled delivery method to deliver pharmaceuticals to mitigate inflammation without significant effect to device design. Using an in vitro protein delivery model to analyze the ability of multiple layers of TMOS to be used for protein delivery from both silicon wafers and microelectrodes, we evaluated the release kinetics and surface properties of the coatings. Through the wafer analysis, results reflect that adding a layer of TMOS significantly lowered ‘burst release’ of the protein, bovine serum albumin (BSA). Coating wafer with freshly-made TMOS prolonged the protein release period. Total protein released per number of coats had no linear correlation, possibly due to nonuniform thickness of coats or protein trapped between multiple layers. From these findings, we speculate the possibility of a gradual release model for the utility of TMOS-coated microelectrodes in neural devices

    The Efficacy and Optimization of Somatosensory Intracortical Microstimulation in Rats

    Get PDF
    Demand exists for brain-machine interfaces that offer a wide range of sensory feedback along with volitional motor control to individuals with limited control of natural sensory or motor function. As these sensorimotor devices are developed, it is necessary to improve the interaction between the prostheses and higher-level cortical structures. Optimizing these somatosensory stimulation parameters will require the use of a high-throughput experimental design. To address this, one Sprague-Dawley rat was trained to respond to auditory stimuli during a conditioned-avoidance behavior task and then implanted with a penetrating microelectrode array in the part of the somatosensory cortex corresponding to the left forelimb. After implantation, the task was repeated using electrical stimuli instead of auditory signals. Detection threshold data was collected from each electrode site to prove stimulation efficacy. The pulse rate of electrical stimulation was varied to optimize power usage by the neuroprosthesis while still achieving the lowest possible thresholds. Electrical impedance spectroscopy and cyclic voltammetry data were collected to monitor the performance of the electrode. Testing shows that auditory learning can be translated to somatosensory stimulation. As an aggregate, somatosensory detection thresholds are significantly different from those in the auditory cortex (Student’s t-test, p \u3c 0.0003). With these results in mind, future research can further optimize somatosensory intracortical microstimulation to provide more sensory feedback in motor prostheses

    Poly(3,4-ethylenedioxythiophene) as a Micro-Neural Interface Material for Electrostimulation

    Get PDF
    Chronic microstimulation-based devices are being investigated to treat conditions such as blindness, deafness, pain, paralysis, and epilepsy. Small-area electrodes are desired to achieve high selectivity. However, a major trade-off with electrode miniaturization is an increase in impedance and charge density requirements. Thus, the development of novel materials with lower interfacial impedance and enhanced charge storage capacity is essential for the development of micro-neural interface-based neuroprostheses. In this report, we study the use of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a neural interface material for microstimulation of small-area iridium electrodes on silicon-substrate arrays. Characterized by electrochemical impedance spectroscopy, electrodeposition of PEDOT results in lower interfacial impedance at physiologically relevant frequencies, with the 1 kHz impedance magnitude being 23.3 ± 0.7 kΩ, compared to 113.6 ± 3.5 kΩ for iridium oxide (IrOx) on 177 μm2 sites. Further, PEDOT exhibits enhanced charge storage capacity at 75.6 ± 5.4 mC/cm2 compared to 28.8 ± 0.3 mC/cm2 for IrOx, characterized by cyclic voltammetry (50 mV/s). These improvements at the electrode interface were corroborated by observation of the voltage excursions that result from constant current pulsing. The PEDOT coatings provide both a lower amplitude voltage and a more ohmic representation of the applied current compared to IrOx. During repetitive pulsing, PEDOT-coated electrodes show stable performance and little change in electrical properties, even at relatively high current densities which cause IrOx instability. These findings support the potential of PEDOT coatings as a micro-neural interface material for electrostimulation

    Chronic brain stimulation using Micro-ECoG devices

    Get PDF
    Recording and stimulating brain activity has had great success both as a research tool and as a clinical technique. Neural prosthetics can replace limbs, restore hearing, and treat disorders like Parkinson’s and epilepsy, but are relatively crude. Current neural prosthetic systems use penetrating electrodes to achieve high precision, but the invasive nature of these devices provoke a strong immune response that limits chronic use. (Polikov et al) In our study we evaluate micro-electrocortiographic (micro-ECoG) devices which sit under the skull and on the surface of the brain for stimulation over chronic timescales. We anticipate these devices with their less invasive placement will evoke less extreme immune responses compared to penetrating electrodes and allow for stable stimulation over long periods of time (months to years). These devices were developed by the NITRO Lab of University of Wisconsin. (Thongpang et al) In short, Sprague Dawley rats were implanted with micro-ECoG devices over either somatosensory or auditor cortex. They were stimulated electrically through these devices on a daily basis to evaluate their chronic performance in vivo. Sensitivity to stimulation was determined via an operant behavioral task and the implants’ electrical properties were measured daily to monitor functionality and approximate of the immune response. After at least two months of implantation, animals were perfused and a histological analysis was performed to evaluate the chronic immune response. From preliminary results we expect to see that the micro-ECoG devices are capable of long term stimulation and evoke a smaller immune response from the brain than penetrating neural implants. In addition, we have found that removing the dura in rats for device implantation causes significant brain swelling, which indicates a strong immune response preventing effective stimulation. This research shows that micro-ECoG devices can chronically stimulate brain tissue and show great promise as a less invasive method of neural interfacing compared to traditional penetrating electrodes

    Cortical microstimulation in auditory cortex of rat elicits best-frequency dependent behaviors

    Full text link
    Electrical activation of the auditory cortex has been shown to elicit an auditory sensation; however, the perceptual effects of auditory cortical microstimulation delivered through penetrating microelectrodes have not been clearly elucidated. This study examines the relationship between electrical microstimulus location within the adult rat auditory cortex and the subsequent behavior induced. Four rats were trained on an auditory frequency discrimination task and their lever-pressing behavior in response to stimuli of intermediate auditory frequencies was quantified. Each trained rat was then implanted with a microwire array in the auditory cortex of the left hemisphere. Best frequencies (BFs) of each electrode in the array were determined by both local field potential and multi-unit spike-rate activity evoked by pure tone stimuli. A cross-dimensional psychophysical generalization paradigm was used to evaluate cortical microstimulation-induced behavior. Using the BFs of each electrode, the microstimulation-induced behavior was evaluated relative to the auditory-induced behavior. Microstimulation resulted in behavior that was dependent on the BFs of the electrodes used for stimulation. These results are consistent with recent reports indicating that electrophysiological recordings of neural responses to sensory stimuli may provide insight into the sensation generated by electrical stimulation of the same sensory neural tissue.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49183/2/jne5_2_005.pd
    corecore